가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

HANDS-ON DEEP LEARNING WITH R;A PRACTICAL GUIDE TO DESIGNING, BUILDING, AND IMPROVING NEURAL NETWORK MODELS USING R [electronic resource].

상세 프로파일

상세정보
자료유형E-Book
개인저자MICHAEL PAWLUS; RODGER DEVINE.
서명/저자사항HANDS-ON DEEP LEARNING WITH R;A PRACTICAL GUIDE TO DESIGNING, BUILDING, AND IMPROVING NEURAL NETWORK MODELS USING R[electronic resource].
발행사항[S.l.] : PACKT PUBLISHING, 2020.
형태사항1 online resource
소장본 주기Master record variable field(s) change: 050, 082, 650 - OCLC control number change
ISBN1788993780
9781788993784
내용주기Cover -- Title Page -- Copyright and Credits -- Dedication -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Deep Learning Basics -- Chapter 1: Machine Learning Basics -- An overview of machine learning -- Preparing data for modeling -- Handling missing values -- Training a model on prepared data -- Train and test data -- Choosing an algorithm -- Evaluating model results -- Machine learning metrics -- Improving model results -- Reviewing different algorithms -- Summary -- Chapter 2: Setting Up R for Deep Learning -- Technical requirements -- Installing the packages
Installing ReinforcementLearning -- Installing RBM -- Installing Keras -- Installing H2O -- Installing MXNet -- Preparing a sample dataset -- Exploring Keras -- Available functions -- A Keras example -- Exploring MXNet -- Available functions -- Getting started with MXNet -- Exploring H2O -- Available functions -- An H2O example -- Exploring ReinforcementLearning and RBM -- Reinforcement learning example -- An RBM example -- Comparing the deep learning libraries -- Summary -- Chapter 3: Artificial Neural Networks -- Technical requirements -- Contrasting deep learning with machine learning
Comparing neural networks and the human brain -- Utilizing bias and activation functions within hidden layers -- Surveying activation functions -- Exploring the sigmoid function -- Investigating the hyperbolic tangent function -- Plotting the rectified linear units activation function -- Calculating the Leaky ReLU activation function -- Defining the swish activation function -- Predicting class likelihood with softmax -- Creating a feedforward network -- Writing a neural network with Base R -- Creating a model with Wisconsin cancer data -- Augmenting our neural network with backpropagation
Deciding on the hidden layers and neurons -- Training and evaluating the model -- Summary -- Chapter 6: Neural Collaborative Filtering Using Embeddings -- Technical requirements -- Introducing recommender systems -- Collaborative filtering with neural networks -- Exploring embeddings -- Preparing, preprocessing, and exploring data -- Performing exploratory data analysis -- Creating user and item embeddings -- Building and training a neural recommender system -- Evaluating results and tuning hyperparameters -- Hyperparameter tuning -- Adding dropout layers -- Adjusting for user-item bias
요약Section 2: Deep Learning Applications -- Chapter 4: CNNs for Image Recognition -- Technical requirements -- Image recognition with shallow nets -- Image recognition with convolutional neural networks -- Optimizers -- Loss functions -- Evaluation metrics -- Enhancing the model with additional layers -- Choosing the most appropriate activation function -- Selecting optimal epochs using dropout and early stopping -- Summary -- Chapter 5: Multilayer Perceptron for Signal Detection -- Technical requirements -- Understanding multilayer perceptrons -- Preparing and preprocessing data
요약Deep learning enables efficient and accurate learning from data. Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. The book provides a hands-on approach to implementation and associated methodologies that will have you up-and-running, and productive in no time.
일반주제명Machine learning.
R (Computer program language)
Machine learning
R (Computer program language)
언어영어
기타형태 저록Print version:Pawlus, MichaelHands-On Deep Learning with R : A Practical Guide to Designing, Building, and Improving Neural Network Models Using RBirmingham : Packt Publishing, Limited,c2020
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2457359

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00018633 006.3/1 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.