MARC보기
LDR05064cmm u2200469M 4500
001000000317750
003OCoLC
00520230525183313
006m d
007cr |||||||||||
008200430s2020 xx o ||| 0 eng d
019 ▼a 1153089714
020 ▼a 1788993780 ▼q (electronic bk.)
020 ▼a 9781788993784 ▼q (electronic bk.)
035 ▼a 2457359 ▼b (N$T)
035 ▼a (OCoLC)1153040549 ▼z (OCoLC)1153089714
040 ▼a YDX ▼b eng ▼c YDX ▼d EBLCP ▼d N$T ▼d OCLCF ▼d 248032
049 ▼a MAIN
050 4 ▼a Q325.5
08204 ▼a 006.3/1 ▼2 23
1001 ▼a MICHAEL PAWLUS; RODGER DEVINE.
24510 ▼a HANDS-ON DEEP LEARNING WITH R;A PRACTICAL GUIDE TO DESIGNING, BUILDING, AND IMPROVING NEURAL NETWORK MODELS USING R ▼h [electronic resource].
260 ▼a [S.l.] : ▼b PACKT PUBLISHING, ▼c 2020.
300 ▼a 1 online resource
5050 ▼a Cover -- Title Page -- Copyright and Credits -- Dedication -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Deep Learning Basics -- Chapter 1: Machine Learning Basics -- An overview of machine learning -- Preparing data for modeling -- Handling missing values -- Training a model on prepared data -- Train and test data -- Choosing an algorithm -- Evaluating model results -- Machine learning metrics -- Improving model results -- Reviewing different algorithms -- Summary -- Chapter 2: Setting Up R for Deep Learning -- Technical requirements -- Installing the packages
5058 ▼a Installing ReinforcementLearning -- Installing RBM -- Installing Keras -- Installing H2O -- Installing MXNet -- Preparing a sample dataset -- Exploring Keras -- Available functions -- A Keras example -- Exploring MXNet -- Available functions -- Getting started with MXNet -- Exploring H2O -- Available functions -- An H2O example -- Exploring ReinforcementLearning and RBM -- Reinforcement learning example -- An RBM example -- Comparing the deep learning libraries -- Summary -- Chapter 3: Artificial Neural Networks -- Technical requirements -- Contrasting deep learning with machine learning
5058 ▼a Comparing neural networks and the human brain -- Utilizing bias and activation functions within hidden layers -- Surveying activation functions -- Exploring the sigmoid function -- Investigating the hyperbolic tangent function -- Plotting the rectified linear units activation function -- Calculating the Leaky ReLU activation function -- Defining the swish activation function -- Predicting class likelihood with softmax -- Creating a feedforward network -- Writing a neural network with Base R -- Creating a model with Wisconsin cancer data -- Augmenting our neural network with backpropagation
5058 ▼a Deciding on the hidden layers and neurons -- Training and evaluating the model -- Summary -- Chapter 6: Neural Collaborative Filtering Using Embeddings -- Technical requirements -- Introducing recommender systems -- Collaborative filtering with neural networks -- Exploring embeddings -- Preparing, preprocessing, and exploring data -- Performing exploratory data analysis -- Creating user and item embeddings -- Building and training a neural recommender system -- Evaluating results and tuning hyperparameters -- Hyperparameter tuning -- Adding dropout layers -- Adjusting for user-item bias
520 ▼a Section 2: Deep Learning Applications -- Chapter 4: CNNs for Image Recognition -- Technical requirements -- Image recognition with shallow nets -- Image recognition with convolutional neural networks -- Optimizers -- Loss functions -- Evaluation metrics -- Enhancing the model with additional layers -- Choosing the most appropriate activation function -- Selecting optimal epochs using dropout and early stopping -- Summary -- Chapter 5: Multilayer Perceptron for Signal Detection -- Technical requirements -- Understanding multilayer perceptrons -- Preparing and preprocessing data
520 ▼a Deep learning enables efficient and accurate learning from data. Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. The book provides a hands-on approach to implementation and associated methodologies that will have you up-and-running, and productive in no time.
590 ▼a Master record variable field(s) change: 050, 082, 650 - OCLC control number change
650 0 ▼a Machine learning.
650 0 ▼a R (Computer program language)
650 7 ▼a Machine learning ▼2 fast ▼0 (OCoLC)fst01004795
650 7 ▼a R (Computer program language) ▼2 fast ▼0 (OCoLC)fst01086207
655 4 ▼a Electronic books.
77608 ▼i Print version: ▼a Pawlus, Michael ▼t Hands-On Deep Learning with R : A Practical Guide to Designing, Building, and Improving Neural Network Models Using R ▼d Birmingham : Packt Publishing, Limited,c2020
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2457359
938 ▼a YBP Library Services ▼b YANK ▼n 301250259
938 ▼a ProQuest Ebook Central ▼b EBLB ▼n EBL6185679
938 ▼a EBSCOhost ▼b EBSC ▼n 2457359
990 ▼a 관리자
994 ▼a 92 ▼b N$T