자료유형 | E-Book |
---|---|
개인저자 | Chopra, Rohan. England, Aaron. Alaudeen, Mohamed Noordeen. |
서명/저자사항 | Data Science with Python :Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data. |
발행사항 | Birmingham : Packt Publishing, Limited, 2019. |
형태사항 | 1 online resource (426 pages) |
소장본 주기 | Added to collection customer.56279.3 |
ISBN | 1838552162 9781838552169 |
일반주기 |
Exercise 27: Tuning the Hyperparameters of a Multiple Logistic Regression Model
|
내용주기 | Cover; FM; Copyright; Table of Contents; Preface; Chapter 1: Introduction to Data Science and Data Pre-Processing; Introduction; Python Libraries; Roadmap for Building Machine Learning Models; Data Representation; Independent and Target Variables; Exercise 1: Loading a Sample Dataset and Creating the Feature Matrix and Target Matrix; Data Cleaning; Exercise 2: Removing Missing Data; Exercise 3: Imputing Missing Data; Exercise 4: Finding and Removing Outliers in Data; Data Integration; Exercise 5: Integrating Data; Data Transformation; Handling Categorical Data Exercise 6: Simple Replacement of Categorical Data with a NumberExercise 7: Converting Categorical Data to Numerical Data Using Label Encoding; Exercise 8: Converting Categorical Data to Numerical Data Using One-Hot Encoding; Data in Different Scales; Exercise 9: Implementing Scaling Using the Standard Scaler Method; Exercise 10: Implementing Scaling Using the MinMax Scaler Method; Data Discretization; Exercise 11: Discretization of Continuous Data; Train and Test Data; Exercise 12: Splitting Data into Train and Test Sets Activity 1: Pre-Processing Using the Bank Marketing Subscription DatasetSupervised Learning; Unsupervised Learning; Reinforcement Learning; Performance Metrics; Summary; Chapter 2: Data Visualization; Introduction; Functional Approach; Exercise 13: Functional Approach -- Line Plot; Exercise 14: Functional Approach -- Add a Second Line to the Line Plot; Activity 2: Line Plot; Exercise 15: Creating a Bar Plot; Activity 3: Bar Plot; Exercise 16: Functional Approach -- Histogram; Exercise 17: Functional Approach -- Box-and-Whisker plot; Exercise 18: Scatterplot Object-Oriented Approach Using SubplotsExercise 19: Single Line Plot using Subplots; Exercise 20: Multiple Line Plots Using Subplots; Activity 4: Multiple Plot Types Using Subplots; Summary; Chapter 3: Introduction to Machine Learning via Scikit-Learn; Introduction; Introduction to Linear and Logistic Regression; Simple Linear Regression; Exercise 21: Preparing Data for a Linear Regression Model; Exercise 22: Fitting a Simple Linear Regression Model and Determining the Intercept and Coefficient Exercise 23: Generating Predictions and Evaluating the Performance of a Simple Linear Regression ModelMultiple Linear Regression; Exercise 24: Fitting a Multiple Linear Regression Model and Determining the Intercept and Coefficients; Activity 5: Generating Predictions and Evaluating the Performance of a Multiple Linear Regression Model; Logistic Regression; Exercise 25: Fitting a Logistic Regression Model and Determining the Intercept and Coefficients; Exercise 26: Generating Predictions and Evaluating the Performance of a Logistic Regression Model |
요약 | Data Science with Python will help you get comfortable with using the Python environment for data science. You will learn all the libraries that a data scientist uses on a daily basis. By the end of this course, you will be able to take a large raw dataset, clean it, manipulate it, and run machine learning algorithms to obtain results that ... |
일반주제명 | Machine learning. Data mining. Python (Computer program language) Data mining. Machine learning. Python (Computer program language) |
언어 | 영어 |
기타형태 저록 | Print version:Chopra, Rohan.Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.Birmingham : Packt Publishing, Limited, 짤20199781838552862 |
대출바로가기 | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2204654 |
인쇄
No. | 등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 예약 | 서비스 | 매체정보 |
---|---|---|---|---|---|---|---|---|
1 | WE00017218 | 006.31 | 가야대학교/전자책서버(컴퓨터서버)/ | 대출가능 |