LDR | | 05567cmm u2200649Mi 4500 |
001 | | 000000316335 |
003 | | OCoLC |
005 | | 20230525180228 |
006 | | m d |
007 | | cr |n|---||||| |
008 | | 190810s2019 enk o 000 0 eng d |
015 | |
▼a GBB9D1843
▼2 bnb |
016 | 7 |
▼a 019485037
▼2 Uk |
019 | |
▼a 1110483785 |
020 | |
▼a 1838552162 |
020 | |
▼a 9781838552169
▼q (electronic bk.) |
020 | |
▼z 9781838552862
▼q (pbk.) |
035 | |
▼a 2204654
▼b (N$T) |
035 | |
▼a (OCoLC)1110489067
▼z (OCoLC)1110483785 |
037 | |
▼a 9781838552169
▼b Packt Publishing |
037 | |
▼a C04D34EC-FFE7-4802-96A6-220761C8F179
▼b OverDrive, Inc.
▼n http://www.overdrive.com |
040 | |
▼a EBLCP
▼b eng
▼e pn
▼c EBLCP
▼d OCLCQ
▼d UKMGB
▼d OCLCO
▼d EBLCP
▼d OCLCF
▼d TEFOD
▼d YDX
▼d UKAHL
▼d OCLCQ
▼d N$T
▼d 248032 |
049 | |
▼a MAIN |
050 | 4 |
▼a QA76.9.D343 |
082 | 04 |
▼a 006.31
▼2 23 |
100 | 1 |
▼a Chopra, Rohan. |
245 | 10 |
▼a Data Science with Python :
▼b Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data. |
260 | |
▼a Birmingham :
▼b Packt Publishing, Limited,
▼c 2019. |
300 | |
▼a 1 online resource (426 pages) |
336 | |
▼a text
▼b txt
▼2 rdacontent |
337 | |
▼a computer
▼b c
▼2 rdamedia |
338 | |
▼a online resource
▼b cr
▼2 rdacarrier |
500 | |
▼a Exercise 27: Tuning the Hyperparameters of a Multiple Logistic Regression Model |
505 | 0 |
▼a Cover; FM; Copyright; Table of Contents; Preface; Chapter 1: Introduction to Data Science and Data Pre-Processing; Introduction; Python Libraries; Roadmap for Building Machine Learning Models; Data Representation; Independent and Target Variables; Exercise 1: Loading a Sample Dataset and Creating the Feature Matrix and Target Matrix; Data Cleaning; Exercise 2: Removing Missing Data; Exercise 3: Imputing Missing Data; Exercise 4: Finding and Removing Outliers in Data; Data Integration; Exercise 5: Integrating Data; Data Transformation; Handling Categorical Data |
505 | 8 |
▼a Exercise 6: Simple Replacement of Categorical Data with a NumberExercise 7: Converting Categorical Data to Numerical Data Using Label Encoding; Exercise 8: Converting Categorical Data to Numerical Data Using One-Hot Encoding; Data in Different Scales; Exercise 9: Implementing Scaling Using the Standard Scaler Method; Exercise 10: Implementing Scaling Using the MinMax Scaler Method; Data Discretization; Exercise 11: Discretization of Continuous Data; Train and Test Data; Exercise 12: Splitting Data into Train and Test Sets |
505 | 8 |
▼a Activity 1: Pre-Processing Using the Bank Marketing Subscription DatasetSupervised Learning; Unsupervised Learning; Reinforcement Learning; Performance Metrics; Summary; Chapter 2: Data Visualization; Introduction; Functional Approach; Exercise 13: Functional Approach -- Line Plot; Exercise 14: Functional Approach -- Add a Second Line to the Line Plot; Activity 2: Line Plot; Exercise 15: Creating a Bar Plot; Activity 3: Bar Plot; Exercise 16: Functional Approach -- Histogram; Exercise 17: Functional Approach -- Box-and-Whisker plot; Exercise 18: Scatterplot |
505 | 8 |
▼a Object-Oriented Approach Using SubplotsExercise 19: Single Line Plot using Subplots; Exercise 20: Multiple Line Plots Using Subplots; Activity 4: Multiple Plot Types Using Subplots; Summary; Chapter 3: Introduction to Machine Learning via Scikit-Learn; Introduction; Introduction to Linear and Logistic Regression; Simple Linear Regression; Exercise 21: Preparing Data for a Linear Regression Model; Exercise 22: Fitting a Simple Linear Regression Model and Determining the Intercept and Coefficient |
505 | 8 |
▼a Exercise 23: Generating Predictions and Evaluating the Performance of a Simple Linear Regression ModelMultiple Linear Regression; Exercise 24: Fitting a Multiple Linear Regression Model and Determining the Intercept and Coefficients; Activity 5: Generating Predictions and Evaluating the Performance of a Multiple Linear Regression Model; Logistic Regression; Exercise 25: Fitting a Logistic Regression Model and Determining the Intercept and Coefficients; Exercise 26: Generating Predictions and Evaluating the Performance of a Logistic Regression Model |
520 | |
▼a Data Science with Python will help you get comfortable with using the Python environment for data science. You will learn all the libraries that a data scientist uses on a daily basis. By the end of this course, you will be able to take a large raw dataset, clean it, manipulate it, and run machine learning algorithms to obtain results that ... |
588 | 0 |
▼a Print version record. |
590 | |
▼a Added to collection customer.56279.3 |
650 | 0 |
▼a Machine learning. |
650 | 0 |
▼a Data mining. |
650 | 0 |
▼a Python (Computer program language) |
650 | 7 |
▼a Data mining.
▼2 fast
▼0 (OCoLC)fst00887946 |
650 | 7 |
▼a Machine learning.
▼2 fast
▼0 (OCoLC)fst01004795 |
650 | 7 |
▼a Python (Computer program language)
▼2 fast
▼0 (OCoLC)fst01084736 |
655 | 4 |
▼a Electronic books. |
700 | 1 |
▼a England, Aaron. |
700 | 1 |
▼a Alaudeen, Mohamed Noordeen. |
776 | 08 |
▼i Print version:
▼a Chopra, Rohan.
▼t Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.
▼d Birmingham : Packt Publishing, Limited, 짤2019
▼z 9781838552862 |
856 | 40 |
▼3 EBSCOhost
▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2204654 |
938 | |
▼a Askews and Holts Library Services
▼b ASKH
▼n BDZ0040275734 |
938 | |
▼a ProQuest Ebook Central
▼b EBLB
▼n EBL5837323 |
938 | |
▼a YBP Library Services
▼b YANK
▼n 300727348 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 2204654 |
990 | |
▼a 관리자 |
994 | |
▼a 92
▼b N$T |