가야대학교 분성도서관

상단 글로벌/추가 메뉴

회원 로그인


자료검색

자료검색

상세정보

부가기능

Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data

상세 프로파일

상세정보
자료유형E-Book
개인저자Chopra, Rohan.
England, Aaron.
Alaudeen, Mohamed Noordeen.
서명/저자사항Data Science with Python :Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.
발행사항Birmingham : Packt Publishing, Limited, 2019.
형태사항1 online resource (426 pages)
소장본 주기Added to collection customer.56279.3
ISBN1838552162
9781838552169

일반주기 Exercise 27: Tuning the Hyperparameters of a Multiple Logistic Regression Model
내용주기Cover; FM; Copyright; Table of Contents; Preface; Chapter 1: Introduction to Data Science and Data Pre-Processing; Introduction; Python Libraries; Roadmap for Building Machine Learning Models; Data Representation; Independent and Target Variables; Exercise 1: Loading a Sample Dataset and Creating the Feature Matrix and Target Matrix; Data Cleaning; Exercise 2: Removing Missing Data; Exercise 3: Imputing Missing Data; Exercise 4: Finding and Removing Outliers in Data; Data Integration; Exercise 5: Integrating Data; Data Transformation; Handling Categorical Data
Exercise 6: Simple Replacement of Categorical Data with a NumberExercise 7: Converting Categorical Data to Numerical Data Using Label Encoding; Exercise 8: Converting Categorical Data to Numerical Data Using One-Hot Encoding; Data in Different Scales; Exercise 9: Implementing Scaling Using the Standard Scaler Method; Exercise 10: Implementing Scaling Using the MinMax Scaler Method; Data Discretization; Exercise 11: Discretization of Continuous Data; Train and Test Data; Exercise 12: Splitting Data into Train and Test Sets
Activity 1: Pre-Processing Using the Bank Marketing Subscription DatasetSupervised Learning; Unsupervised Learning; Reinforcement Learning; Performance Metrics; Summary; Chapter 2: Data Visualization; Introduction; Functional Approach; Exercise 13: Functional Approach -- Line Plot; Exercise 14: Functional Approach -- Add a Second Line to the Line Plot; Activity 2: Line Plot; Exercise 15: Creating a Bar Plot; Activity 3: Bar Plot; Exercise 16: Functional Approach -- Histogram; Exercise 17: Functional Approach -- Box-and-Whisker plot; Exercise 18: Scatterplot
Object-Oriented Approach Using SubplotsExercise 19: Single Line Plot using Subplots; Exercise 20: Multiple Line Plots Using Subplots; Activity 4: Multiple Plot Types Using Subplots; Summary; Chapter 3: Introduction to Machine Learning via Scikit-Learn; Introduction; Introduction to Linear and Logistic Regression; Simple Linear Regression; Exercise 21: Preparing Data for a Linear Regression Model; Exercise 22: Fitting a Simple Linear Regression Model and Determining the Intercept and Coefficient
Exercise 23: Generating Predictions and Evaluating the Performance of a Simple Linear Regression ModelMultiple Linear Regression; Exercise 24: Fitting a Multiple Linear Regression Model and Determining the Intercept and Coefficients; Activity 5: Generating Predictions and Evaluating the Performance of a Multiple Linear Regression Model; Logistic Regression; Exercise 25: Fitting a Logistic Regression Model and Determining the Intercept and Coefficients; Exercise 26: Generating Predictions and Evaluating the Performance of a Logistic Regression Model
요약Data Science with Python will help you get comfortable with using the Python environment for data science. You will learn all the libraries that a data scientist uses on a daily basis. By the end of this course, you will be able to take a large raw dataset, clean it, manipulate it, and run machine learning algorithms to obtain results that ...
일반주제명Machine learning.
Data mining.
Python (Computer program language)
Data mining.
Machine learning.
Python (Computer program language)
언어영어
기타형태 저록Print version:Chopra, Rohan.Data Science with Python : Combine Python with Machine Learning Principles to Discover Hidden Patterns in Raw Data.Birmingham : Packt Publishing, Limited, 짤20199781838552862
대출바로가기http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2204654

소장정보

  • 소장정보

인쇄 인쇄

메세지가 없습니다
No. 등록번호 청구기호 소장처 도서상태 반납예정일 예약 서비스 매체정보
1 WE00017218 006.31 가야대학교/전자책서버(컴퓨터서버)/ 대출가능 인쇄 이미지  

서평

  • 서평

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 

퀵메뉴

대출현황/연장
예약현황조회/취소
자료구입신청
상호대차
FAQ
교외접속
사서에게 물어보세요
메뉴추가
quickBottom

카피라이터

  • 개인정보보호방침
  • 이메일무단수집거부

김해캠퍼스 | 621-748 | 경남 김해시 삼계로 208 | TEL:055-330-1033 | FAX:055-330-1032
			Copyright 2012 by kaya university Bunsung library All rights reserved.