LDR | | 01568nmm uu200385 4500 |
001 | | 000000334594 |
005 | | 20240805180624 |
008 | | 181129s2017 |||||||||||||||||c||eng d |
020 | |
▼a 9780438024199 |
035 | |
▼a (MiAaPQ)AAI10283008 |
035 | |
▼a (MiAaPQ)wisc:14482 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 310 |
100 | 1 |
▼a Cheng, Chen. |
245 | 10 |
▼a Variable Selection Methods for Structured Data. |
260 | |
▼a [S.l.] :
▼b The University of Wisconsin - Madison.,
▼c 2017 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2017 |
300 | |
▼a 94 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Adviser: Chunming Zhang. |
502 | 1 |
▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2017. |
520 | |
▼a This dissertation focuses on developing regularization models for structured data. |
520 | |
▼a Chapter 1 reviews classic regularization methods in the literature. Chapter 2 introduces the penalized Group-Bregman Divergence (BD) model. It investigates new aspects of variable selection for group-structured data by relaxing the restrictions |
590 | |
▼a School code: 0262. |
650 | 4 |
▼a Statistics. |
690 | |
▼a 0463 |
710 | 20 |
▼a The University of Wisconsin - Madison.
▼b Statistics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0262 |
791 | |
▼a Ph.D. |
792 | |
▼a 2017 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996587
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |