MARC보기
LDR01481nmm uu200373 4500
001000000334582
00520240805180609
008181129s2017 |||||||||||||||||c||eng d
020 ▼a 9780438373839
035 ▼a (MiAaPQ)AAI10279024
035 ▼a (MiAaPQ)wisc:14351
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Ta, Tram.
24510 ▼a Generalized Regression Estimators with High-dimensional Covariates.
260 ▼a [S.l.] : ▼b The University of Wisconsin - Madison., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 119 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: Jun Shao.
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2017.
520 ▼a Data from a large number of covariates are frequently observed in survey studies. These auxiliary variables contain valuable information that can be used to improve the efficiency when estimating certain population characteristics such as the po
590 ▼a School code: 0262.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a The University of Wisconsin - Madison. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996575 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자