MARC보기
LDR01729nmm uu200385 4500
001000000334388
00520240805180214
008181129s2017 |||||||||||||||||c||eng d
020 ▼a 9780438309739
035 ▼a (MiAaPQ)AAI10970732
035 ▼a (MiAaPQ)OhioLINK:osu1497966698387606
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Gory, Jeffrey J.
24510 ▼a Marginally Interpretable Generalized Linear Mixed Models.
260 ▼a [S.l.] : ▼b The Ohio State University., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 178 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Advisers: Peter Craigmile
5021 ▼a Thesis (Ph.D.)--The Ohio State University, 2017.
520 ▼a A popular approach for relating correlated measurements of a non-Gaussian response variable to a set of predictors is to introduce latent random variables and fit a generalized linear mixed model. The conventional strategy for specifying such a
520 ▼a We define a class of marginally interpretable generalized linear mixed models that lead to parameter estimates with a marginal interpretation while maintaining the desirable statistical properties of a conditionally specified model. The distingu
590 ▼a School code: 0168.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a The Ohio State University. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0168
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001339 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자