| LDR |  | 00000nmm u2200205   4500 | 
| 001 |  | 000000334331 | 
| 005 |  | 20250203144755 | 
| 008 |  | 181129s2018    |||    |   | |      eng d | 
| 020 |  | ▼a 9780438283886 | 
| 035 |  | ▼a (MiAaPQ)AAI10969872 | 
| 040 |  | ▼a MiAaPQ
    ▼c MiAaPQ
    ▼d 248032 | 
| 049 | 1 | ▼f DP | 
| 082 | 0 | ▼a 621 | 
| 100 | 1 | ▼a Owoyele, Opeoluwa. | 
| 245 | 10 | ▼a Accelerating the Simulation of Chemically Reacting Turbulent Flows via Machine Learning Techniques. | 
| 260 |  | ▼a [S.l.] :
    ▼b North Carolina State University.,
    ▼c 2018 | 
| 260 | 1 | ▼a Ann Arbor :
    ▼b ProQuest Dissertations & Theses,
    ▼c 2018 | 
| 300 |  | ▼a 223 p. | 
| 500 |  | ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B. | 
| 500 |  | ▼a Adviser: Tarek Echekki. | 
| 502 | 1 | ▼a Thesis (Ph.D.)--North Carolina State University, 2018. | 
| 520 |  | ▼a Turbulent reacting flows constitute one of the most complex classes of engineering problems because they combine the chaotic process of turbulence with stiff, highly nonlinear chemical kinetics. The presence of a large number of species -- leadi | 
| 590 |  | ▼a School code: 0155. | 
| 650 | 4 | ▼a Mechanical engineering. | 
| 690 |  | ▼a 0548 | 
| 710 | 20 | ▼a North Carolina State University.
    ▼b Mechanical Engineering. | 
| 773 | 0 | ▼t Dissertation Abstracts International
    ▼g 79-12B(E). | 
| 773 |  | ▼t Dissertation Abstract International | 
| 790 |  | ▼a 0155 | 
| 791 |  | ▼a Ph.D. | 
| 792 |  | ▼a 2018 | 
| 793 |  | ▼a English | 
| 856 | 40 | ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001289
    ▼n KERIS | 
| 980 |  | ▼a 201812
    ▼f 2019 | 
| 990 |  | ▼a 관리자
    ▼b 정현우 |