LDR | | 01498nmm uu200361 4500 |
001 | | 000000334331 |
005 | | 20240805180106 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438283886 |
035 | |
▼a (MiAaPQ)AAI10969872 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 621 |
100 | 1 |
▼a Owoyele, Opeoluwa. |
245 | 10 |
▼a Accelerating the Simulation of Chemically Reacting Turbulent Flows via Machine Learning Techniques. |
260 | |
▼a [S.l.] :
▼b North Carolina State University.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 223 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B. |
500 | |
▼a Adviser: Tarek Echekki. |
502 | 1 |
▼a Thesis (Ph.D.)--North Carolina State University, 2018. |
520 | |
▼a Turbulent reacting flows constitute one of the most complex classes of engineering problems because they combine the chaotic process of turbulence with stiff, highly nonlinear chemical kinetics. The presence of a large number of species -- leadi |
590 | |
▼a School code: 0155. |
650 | 4 |
▼a Mechanical engineering. |
690 | |
▼a 0548 |
710 | 20 |
▼a North Carolina State University.
▼b Mechanical Engineering. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-12B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0155 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001289
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |