MARC보기
LDR01498nmm uu200361 4500
001000000334331
00520240805180106
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438283886
035 ▼a (MiAaPQ)AAI10969872
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 621
1001 ▼a Owoyele, Opeoluwa.
24510 ▼a Accelerating the Simulation of Chemically Reacting Turbulent Flows via Machine Learning Techniques.
260 ▼a [S.l.] : ▼b North Carolina State University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 223 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Tarek Echekki.
5021 ▼a Thesis (Ph.D.)--North Carolina State University, 2018.
520 ▼a Turbulent reacting flows constitute one of the most complex classes of engineering problems because they combine the chaotic process of turbulence with stiff, highly nonlinear chemical kinetics. The presence of a large number of species -- leadi
590 ▼a School code: 0155.
650 4 ▼a Mechanical engineering.
690 ▼a 0548
71020 ▼a North Carolina State University. ▼b Mechanical Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0155
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001289 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자