MARC보기
LDR01745nmm uu200373 4500
001000000334329
00520240805180103
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438283879
035 ▼a (MiAaPQ)AAI10969871
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 004
1001 ▼a O'Brien, Michael Patrick.
24512 ▼a A Multifaceted Approach to Improving the Practicality of Structural Graph Algorithms.
260 ▼a [S.l.] : ▼b North Carolina State University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 147 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Blair D. Sullivan.
5021 ▼a Thesis (Ph.D.)--North Carolina State University, 2018.
520 ▼a Graph algorithms have become an integral part of modern data analytics, but existing approaches have struggled to scale to increasing network sizes. The theoretical computer science community has a rich history of research that circumvents these
520 ▼a This dissertation focuses on alleviating practical barriers to the use of structural graph algorithms in large-scale data analytics, addressing problems on multiple different fronts. First, we show that some structural features can still be iden
590 ▼a School code: 0155.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a North Carolina State University. ▼b Computer Science.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0155
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001288 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자