MARC보기
LDR01952nmm uu200397 4500
001000000334239
00520240805175918
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438061415
035 ▼a (MiAaPQ)AAI10829071
035 ▼a (MiAaPQ)wisc:15393
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Noack, Christian.
24510 ▼a Fluctuation Exponents and Exact Solvability of 1 + 1 Dimensional Directed Lattice Polymers.
260 ▼a [S.l.] : ▼b The University of Wisconsin - Madison., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 102 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Timo Seppalainen.
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2018.
520 ▼a We prove that the stationary point-to-point versions of the four 1+1 dimensional lattice directed polymers: the log-gamma, strict-weak, beta, and inverse-beta models all have the KPZ predicted free energy and path fluctuation exponents of 1/3 an
520 ▼a Th,Y -invariance encapsulates the stationarity of the four models, while the Mellin transform property says the model has sufficiently well-behaved or regular distributions. In addition, we show that under some regularity assumptions, up to natu
520 ▼a We conclude by providing a partial connection between T h,Y -invariance and a third form of integrability, namely coordinate Bethe ansatz solvability.
590 ▼a School code: 0262.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a The University of Wisconsin - Madison. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999257 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자