LDR | | 01699nmm uu200385 4500 |
001 | | 000000334179 |
005 | | 20240805175304 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438177581 |
035 | |
▼a (MiAaPQ)AAI10828611 |
035 | |
▼a (MiAaPQ)washington:18884 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Bragg, Daniel. |
245 | 10 |
▼a Twistor Spaces for Supersingular K3 Surfaces. |
260 | |
▼a [S.l.] :
▼b University of Washington.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 149 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B. |
500 | |
▼a Adviser: Max Lieblich. |
502 | 1 |
▼a Thesis (Ph.D.)--University of Washington, 2018. |
520 | |
▼a We develop a theory of twistor spaces for supersingular K3 surfaces, extending Artin's analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are families of twisted supersingular K3 surfaces over the affi |
520 | |
▼a As applications of this theory, we give a new proof of the Ogus's crystalline Torelli theorem, inspired by Verbitsky's proof in the complex analytic setting. We also obtain a new proof of the result of Rudakov-Shafarevich that supersingular K3 s |
590 | |
▼a School code: 0250. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of Washington.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-12B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0250 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999193
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |