MARC보기
LDR01857nmm uu200397 4500
001000000334151
00520240805175231
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438177147
035 ▼a (MiAaPQ)AAI10828466
035 ▼a (MiAaPQ)washington:18835
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Fowler, Christopher.
24510 ▼a Random Permutations and Simplicial Complexes.
260 ▼a [S.l.] : ▼b University of Washington., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 111 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Christopher Hoffman.
5021 ▼a Thesis (Ph.D.)--University of Washington, 2018.
520 ▼a We study the asymptotic behavior of distributions on two different combinatorial objects, permutations and simplicial complexes.
520 ▼a First we study strong alpha-logarithmic measures on the symmetric group, including the well- studied Ewens sampling formula (see [21] and [20] for reference). We show that, for almost every alpha, precisely [(1 -- alpha log 2)]--1] are need to i
520 ▼a Then we direct our attention to a multi-parameter measure on simplicial complexes. This measure is an interpolation between random clique complexes and Linial-Meshulam random k-dimensional complexes, both subjects of considerable attention over
590 ▼a School code: 0250.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of Washington. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0250
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999169 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자