MARC보기
LDR01962nmm uu200433 4500
001000000334086
00520240805175115
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438068841
035 ▼a (MiAaPQ)AAI10828041
035 ▼a (MiAaPQ)ucla:16939
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 519
1001 ▼a Chao, Hsiao-Han.
24510 ▼a Structured Low-rank Matrix Approximation in Signal Processing: Semidefinite Formulations and Entropic First-order Methods.
260 ▼a [S.l.] : ▼b University of California, Los Angeles., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 151 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Lieven Vandenberghe.
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a Applications of semidefinite optimization in signal processing are often derived from the Kalman--Yakubovich--Popov lemma and its extensions, which give sum-of-squares theorems of nonnegative trigonometric polynomials and generalized polynomials
520 ▼a The thesis can be divided into two parts. As a first contribution, we extend the semidefinite penalty formulations in super-resolution applications to more general types of structured low-rank matrix approximations. The penalty functions for str
590 ▼a School code: 0031.
650 4 ▼a Applied mathematics.
650 4 ▼a Electrical engineering.
650 4 ▼a Computer engineering.
690 ▼a 0364
690 ▼a 0544
690 ▼a 0464
71020 ▼a University of California, Los Angeles. ▼b Electrical Engineering 0303.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999106 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자