| LDR | | 00000nmm u2200205 4500 |
| 001 | | 000000334076 |
| 005 | | 20250124144542 |
| 008 | | 181129s2018 ||| | | | eng d |
| 020 | |
▼a 9780438075344 |
| 035 | |
▼a (MiAaPQ)AAI10827950 |
| 035 | |
▼a (MiAaPQ)ucla:16937 |
| 040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
| 049 | 1 |
▼f DP |
| 082 | 0 |
▼a 510 |
| 100 | 1 |
▼a Cadegan-Schlieper, William Arthur. |
| 245 | 10 |
▼a On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. |
| 260 | |
▼a [S.l.] :
▼b University of California, Los Angeles.,
▼c 2018 |
| 260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
| 300 | |
▼a 96 p. |
| 500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
| 500 | |
▼a Adviser: Raphael Rouquier. |
| 502 | 1 |
▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018. |
| 520 | |
▼a The Weyl group used in Lie theory can be generalized into reflection groups in more general division algebras |
| 520 | |
▼a In this paper, I will describe the fruit of efforts to see whether the concept of a braid group (and pure braid group) can be extended from the complex case to the quaternionic case, in particular the category of representations. In Chapter 2, I |
| 520 | |
▼a However, in attempting to extend this further, problems arise. In particular, the quaternionification of a complex reflection group is isomorphic to itself through complex conjugation, producing a permutation of its hyperplanes that can be repre |
| 590 | |
▼a School code: 0031. |
| 650 | 4 |
▼a Mathematics. |
| 690 | |
▼a 0405 |
| 710 | 20 |
▼a University of California, Los Angeles.
▼b Mathematics 0540. |
| 773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
| 773 | |
▼t Dissertation Abstract International |
| 790 | |
▼a 0031 |
| 791 | |
▼a Ph.D. |
| 792 | |
▼a 2018 |
| 793 | |
▼a English |
| 856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999093
▼n KERIS |
| 980 | |
▼a 201812
▼f 2019 |
| 990 | |
▼a 관리자
▼b 정현우 |