MARC보기
LDR01953nmm uu200397 4500
001000000334076
00520240805175104
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438075344
035 ▼a (MiAaPQ)AAI10827950
035 ▼a (MiAaPQ)ucla:16937
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Cadegan-Schlieper, William Arthur.
24510 ▼a On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.
260 ▼a [S.l.] : ▼b University of California, Los Angeles., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 96 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Raphael Rouquier.
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a The Weyl group used in Lie theory can be generalized into reflection groups in more general division algebras
520 ▼a In this paper, I will describe the fruit of efforts to see whether the concept of a braid group (and pure braid group) can be extended from the complex case to the quaternionic case, in particular the category of representations. In Chapter 2, I
520 ▼a However, in attempting to extend this further, problems arise. In particular, the quaternionification of a complex reflection group is isomorphic to itself through complex conjugation, producing a permutation of its hyperplanes that can be repre
590 ▼a School code: 0031.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Los Angeles. ▼b Mathematics 0540.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999093 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자