LDR | | 01906nmm uu200433 4500 |
001 | | 000000334025 |
005 | | 20240805175005 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438079755 |
035 | |
▼a (MiAaPQ)AAI10827562 |
035 | |
▼a (MiAaPQ)cmu:10266 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 621.3 |
100 | 1 |
▼a Cai, Ermao. |
245 | 10 |
▼a Power/Performance Modeling and Optimization: Using and Characterizing Machine Learning Applications. |
260 | |
▼a [S.l.] :
▼b Carnegie Mellon University.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 135 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
500 | |
▼a Adviser: Diana Marculescu. |
502 | 1 |
▼a Thesis (Ph.D.)--Carnegie Mellon University, 2018. |
520 | |
▼a Energy and power are the main design constraints for modern high-performance computing systems. Indeed, energy efficiency plays a critical role in performance improvement or energy saving for either state-of-the-art general purpose hardware plat |
520 | |
▼a In this thesis, we study these effects and propose to combine machine learning techniques and domain knowledge to learn the performance, power, and energy models for high-performance computing systems. For technology-aware multi-core system desi |
590 | |
▼a School code: 0041. |
650 | 4 |
▼a Computer engineering. |
650 | 4 |
▼a Artificial intelligence. |
650 | 4 |
▼a Computer science. |
690 | |
▼a 0464 |
690 | |
▼a 0800 |
690 | |
▼a 0984 |
710 | 20 |
▼a Carnegie Mellon University.
▼b Electrical and Computer Engineering. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0041 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999043
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |