LDR | | 01587nmm uu200397 4500 |
001 | | 000000334003 |
005 | | 20240805174939 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438030497 |
035 | |
▼a (MiAaPQ)AAI10827402 |
035 | |
▼a (MiAaPQ)ucla:16914 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 610 |
100 | 1 |
▼a Shen, Shiwen. |
245 | 10 |
▼a Characterizing Pulmonary Nodules using Machine and Deep Learning Methods to Improve Lung Cancer Diagnosis. |
260 | |
▼a [S.l.] :
▼b University of California, Los Angeles.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 137 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Advisers: Alex AT Bui |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018. |
520 | |
▼a Low-dose computed tomography (CT) screening has been widely used to detect and diagnose early stage lung cancer. Clinical trials have shown that low-dose CT reduced lung cancer mortality by 20% relative to plain chest radiography |
590 | |
▼a School code: 0031. |
650 | 4 |
▼a Biomedical engineering. |
650 | 4 |
▼a Computer science. |
690 | |
▼a 0541 |
690 | |
▼a 0984 |
710 | 20 |
▼a University of California, Los Angeles.
▼b Bioengineering 0288. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0031 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999021
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |