MARC보기
LDR01587nmm uu200397 4500
001000000334003
00520240805174939
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438030497
035 ▼a (MiAaPQ)AAI10827402
035 ▼a (MiAaPQ)ucla:16914
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 610
1001 ▼a Shen, Shiwen.
24510 ▼a Characterizing Pulmonary Nodules using Machine and Deep Learning Methods to Improve Lung Cancer Diagnosis.
260 ▼a [S.l.] : ▼b University of California, Los Angeles., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 137 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Advisers: Alex AT Bui
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a Low-dose computed tomography (CT) screening has been widely used to detect and diagnose early stage lung cancer. Clinical trials have shown that low-dose CT reduced lung cancer mortality by 20% relative to plain chest radiography
590 ▼a School code: 0031.
650 4 ▼a Biomedical engineering.
650 4 ▼a Computer science.
690 ▼a 0541
690 ▼a 0984
71020 ▼a University of California, Los Angeles. ▼b Bioengineering 0288.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999021 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자