MARC보기
LDR01661nmm uu200361 4500
001000000333855
00520240805174650
008181129s2017 |||||||||||||||||c||eng d
020 ▼a 9780438120402
035 ▼a (MiAaPQ)AAI10902785
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 004
1001 ▼a Crawford, Chris S.
24510 ▼a Applying Block-Based Programming to Neurofeedback Application Development.
260 ▼a [S.l.] : ▼b University of Florida., ▼c 2017
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2017
300 ▼a 165 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
5021 ▼a Thesis (Ph.D.)--University of Florida, 2017.
520 ▼a Non-medical Brain-Computer Interfaces (BCIs) are gaining popularity as neurophysiological devices, capable of measuring users state, become more affordable and effective. BCI technology has been integrated into applications for various purposes
520 ▼a This research explores the concept of using block-based programming (BBP) to aid novice programmers with creating BCI feedback applications. This work presents a BBP environment with electroencephalogram (EEG) sensing features that was designed
590 ▼a School code: 0070.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a University of Florida. ▼b Human-Centered Computing.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0070
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000387 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자