LDR | | 01753nmm uu200385 4500 |
001 | | 000000333788 |
005 | | 20240805174535 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438204157 |
035 | |
▼a (MiAaPQ)AAI10825215 |
035 | |
▼a (MiAaPQ)ucsd:17521 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Tang, Xiudi. |
245 | 10 |
▼a Symplectic Stability and New Symplectic Invariants of Integrable Systems. |
260 | |
▼a [S.l.] :
▼b University of California, San Diego.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 140 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B. |
500 | |
▼a Adviser: Alvaro Pelayo. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, San Diego, 2018. |
520 | |
▼a In this dissertation, I prove a number of stability theorems for volume forms and symplectic forms in the noncompact setting, as well as a semiglobal classification result of finite dimensional integrable Hamiltonian systems. Volume forms and sy |
520 | |
▼a Integrable systems are, roughly, dynamical systems with the maximal amount of conserved quantities. The symplectic theory of integrable systems started from the action-angle theorem of Minuer in 1937 and Liouville--Arnold in 1963, which was exte |
590 | |
▼a School code: 0033. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of California, San Diego.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-12B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0033 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998744
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |