MARC보기
LDR01753nmm uu200385 4500
001000000333788
00520240805174535
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438204157
035 ▼a (MiAaPQ)AAI10825215
035 ▼a (MiAaPQ)ucsd:17521
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Tang, Xiudi.
24510 ▼a Symplectic Stability and New Symplectic Invariants of Integrable Systems.
260 ▼a [S.l.] : ▼b University of California, San Diego., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 140 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Alvaro Pelayo.
5021 ▼a Thesis (Ph.D.)--University of California, San Diego, 2018.
520 ▼a In this dissertation, I prove a number of stability theorems for volume forms and symplectic forms in the noncompact setting, as well as a semiglobal classification result of finite dimensional integrable Hamiltonian systems. Volume forms and sy
520 ▼a Integrable systems are, roughly, dynamical systems with the maximal amount of conserved quantities. The symplectic theory of integrable systems started from the action-angle theorem of Minuer in 1937 and Liouville--Arnold in 1963, which was exte
590 ▼a School code: 0033.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, San Diego. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0033
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998744 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자