MARC보기
LDR01694nmm uu200385 4500
001000000333736
00520240805174437
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438376700
035 ▼a (MiAaPQ)AAI10824628
035 ▼a (MiAaPQ)duke:14759
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 004
1001 ▼a He, Xi.
24510 ▼a Policy Driven Data Sharing with Provable Privacy Guarantees.
260 ▼a [S.l.] : ▼b Duke University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 208 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
500 ▼a Adviser: Ashwin Machanavajjhala.
5021 ▼a Thesis (Ph.D.)--Duke University, 2018.
520 ▼a Companies such as Google or Facebook collect a substantial amount of data about their users to provide useful services. The release of these datasets for general use can enable numerous innovative applications and scientific research. However, s
520 ▼a This dissertation presents a novel policy-driven approach to design provable privacy guarantees for complex settings. This policy-driven approach results in a useful class of provable privacy definitions, named as Blowfish privacy, (a) generaliz
590 ▼a School code: 0066.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a Duke University. ▼b Computer Science.
7730 ▼t Dissertation Abstracts International ▼g 80-02B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0066
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998684 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자