MARC보기
LDR01863nmm uu200397 4500
001000000333543
00520240805173230
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438048256
035 ▼a (MiAaPQ)AAI10817314
035 ▼a (MiAaPQ)princeton:12546
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Spirkl, Sophie Theresa.
24510 ▼a Cliques, Stable Sets, And Coloring In Graphs with Forbidden Induced Subgraphs.
260 ▼a [S.l.] : ▼b Princeton University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 209 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Advisers: Maria Chudnovsky
5021 ▼a Thesis (Ph.D.)--Princeton University, 2018.
520 ▼a The Gyarfas-Sumner conjecture [29, 42] states that for every tree T there is a function f such that for every graph G with no induced subgraph isomorphic to T the chromatic number of G is at most f(o(G)), where o(G) is its clique number. We pro
520 ▼a A class C of graphs has the EH-property if there is a delta > 0 such that every G &isin
520 ▼a The strong perfect graph theorem [11] contains a decomposition theorem, and even though perfect graphs can be colored in polynomial time [28], no combinatorial algorithm for this is known. One obstacle for such an algorithm are "skew partitions"
590 ▼a School code: 0181.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a Princeton University. ▼b Applied and Computational Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0181
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998349 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자