MARC보기
LDR00000nmm u2200205 4500
001000000333531
00520250117125942
008181129s2018 ||| | | | eng d
020 ▼a 9780355941111
035 ▼a (MiAaPQ)AAI10817450
035 ▼a (MiAaPQ)wisc:15277
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 519
1001 ▼a Brunner, James D.
24510 ▼a Polynomial Dynamical Systems & Interaction Network Models.
260 ▼a [S.l.] : ▼b The University of Wisconsin - Madison., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 125 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Gheorghe Craciun.
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2018.
520 ▼a A persistent dynamical system in positive phase space is one whose solutions have positive lower bounds for large t, while a permanent dynamical system in positive phase space is one whose solutions have uniform upper and lower bounds for large
520 ▼a We define two important tools in the analysis of polynomial dynamical systems, the Euclidean embedded graph (E-graph) and the Dominance Differential Inclusion. We present a construction for the Dominance Differential Inclusion, and we prove that
520 ▼a Furthermore, we present an overview of the classical results of chemical reaction network theory, and present some examples of interest.
590 ▼a School code: 0262.
650 4 ▼a Applied mathematics.
650 4 ▼a Mathematics.
690 ▼a 0364
690 ▼a 0405
71020 ▼a The University of Wisconsin - Madison. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998367 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자