MARC보기
LDR01729nmm uu200385 4500
001000000333493
00520240805173132
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438088504
035 ▼a (MiAaPQ)AAI10821609
035 ▼a (MiAaPQ)uchicago:14400
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Manning, Jeffrey.
24510 ▼a Taylor-Wiles-Kisin Patching and the Mod lLanglands Correspondence.
260 ▼a [S.l.] : ▼b The University of Chicago., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 77 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Matthew J. Emerton.
5021 ▼a Thesis (Ph.D.)--The University of Chicago, 2018.
520 ▼a We use the Taylor--Wiles--Kisin patching method to investigate the multiplicities with which Galois representations occur in the mod l cohomology of Shimura curves over totally real number fields. Our method relies on explicit computations of l
520 ▼a Our main result is a "multiplicity 2k" theorem in the minimal level case (which we prove under some mild technical hypotheses), where k is a number that depends only on local Galois theoretic information at the primes dividing the discriminant o
590 ▼a School code: 0330.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a The University of Chicago. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0330
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998395 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자