LDR | | 01729nmm uu200385 4500 |
001 | | 000000333493 |
005 | | 20240805173132 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438088504 |
035 | |
▼a (MiAaPQ)AAI10821609 |
035 | |
▼a (MiAaPQ)uchicago:14400 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Manning, Jeffrey. |
245 | 10 |
▼a Taylor-Wiles-Kisin Patching and the Mod lLanglands Correspondence. |
260 | |
▼a [S.l.] :
▼b The University of Chicago.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 77 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
500 | |
▼a Adviser: Matthew J. Emerton. |
502 | 1 |
▼a Thesis (Ph.D.)--The University of Chicago, 2018. |
520 | |
▼a We use the Taylor--Wiles--Kisin patching method to investigate the multiplicities with which Galois representations occur in the mod l cohomology of Shimura curves over totally real number fields. Our method relies on explicit computations of l |
520 | |
▼a Our main result is a "multiplicity 2k" theorem in the minimal level case (which we prove under some mild technical hypotheses), where k is a number that depends only on local Galois theoretic information at the primes dividing the discriminant o |
590 | |
▼a School code: 0330. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a The University of Chicago.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0330 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998395
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |