MARC보기
LDR01988nmm uu200397 4500
001000000333491
00520240805173130
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438332102
035 ▼a (MiAaPQ)AAI10821605
035 ▼a (MiAaPQ)northwestern:14165
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Zhang, Jingsi Joyce.
24510 ▼a Variable Screening and Inference Problems for High Dimensional Data.
260 ▼a [S.l.] : ▼b Northwestern University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 138 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Joel Horowitz.
5021 ▼a Thesis (Ph.D.)--Northwestern University, 2018.
520 ▼a This dissertation focuses on variable screening for ultra-high dimensional data and inference for comparatively-high dimensional data. I explore two specific problems in this area, which are motivated by real data examples, and discuss the motiv
520 ▼a Chapter 1 introduces a new metric, the so-called martingale difference correlation, to measure the departure of conditional mean independence between a scalar response variable Y and a vector predictor variable X. Our metric is a natural extens
520 ▼a In Chapter 2, we propose a general method for constructing confidence intervals and statistical tests for single or low-dimensional components of a large parameter vector in a high-dimensional linear model, where the dimension of the regression
590 ▼a School code: 0163.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a Northwestern University. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0163
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998393 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자