MARC보기
LDR00000nmm u2200205 4500
001000000333442
00520250115153650
008181129s2018 ||| | | | eng d
020 ▼a 9780438325418
035 ▼a (MiAaPQ)AAI10822189
035 ▼a (MiAaPQ)berkeley:17999
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Wilson, Ashia.
24510 ▼a Lyapunov Arguments in Optimization.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 160 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Advisers: Michael I. Jordan
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a Optimization is among the richest modeling languages in science. In statistics and machine learning, for instance, inference is typically posed as an optimization problem. While there are many algorithms designed to solve optimization problems,
520 ▼a The central contributions of this thesis are the following results: we (1) present several variational principles whereby we obtain continuous-time dynamical systems useful for optimization
590 ▼a School code: 0028.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Berkeley. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998454 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자