MARC보기
LDR01502nmm uu200373 4500
001000000333436
00520240805173027
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438325364
035 ▼a (MiAaPQ)AAI10822134
035 ▼a (MiAaPQ)berkeley:17990
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Schmaltz, Wolfgang William.
24510 ▼a Gromov-Witten Axioms for Symplectic Manifolds via Polyfold Theory.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 160 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: Katrin Wehrheim.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a Polyfold theory, as developed by Hofer, Wysocki, and Zehnder, is a relatively new approach to resolving transversality issues that arise in the study of J-holomorphic curves in symplectic geometry. This approach has recently led to a well-defin
590 ▼a School code: 0028.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Berkeley. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998448 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자