LDR | | 00000nmm u2200205 4500 |
001 | | 000000333416 |
005 | | 20250115150909 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780438324886 |
035 | |
▼a (MiAaPQ)AAI10817094 |
035 | |
▼a (MiAaPQ)berkeley:17893 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Williams, Brandon. |
245 | 10 |
▼a Computing Modular Forms for the Weil Representation. |
260 | |
▼a [S.l.] :
▼b University of California, Berkeley.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 188 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: Richard Borcherds. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a We describe an algorithm to compute bases of modular forms with rational coefficients for the Weil representation associated to an even lattice. In large enough weights the forms we construct are zero-values of Jacobi forms of rational index, wh |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of California, Berkeley.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998322
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |