MARC보기
LDR01782nmm uu200409 4500
001000000333407
00520240805172953
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438324862
035 ▼a (MiAaPQ)AAI10817004
035 ▼a (MiAaPQ)berkeley:17888
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 312
1001 ▼a Alexander, Monica.
24510 ▼a Bayesian Methods for Mortality Estimation.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 127 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: A.
500 ▼a Adviser: Joshua R. Goldstein.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a The development of mortality models is important in order to reconstruct historical processes, understand current patterns and predict future trends. Mortality models are particularly useful when the available data are sparse, unreliable or inco
520 ▼a This dissertation introduces Bayesian methods of mortality estimation in three contexts where the available data are imperfect. The first paper develops a method to estimate subnational mortality in situations with small populations and highly-v
590 ▼a School code: 0028.
650 4 ▼a Demography.
650 4 ▼a Statistics.
690 ▼a 0938
690 ▼a 0463
71020 ▼a University of California, Berkeley. ▼b Demography.
7730 ▼t Dissertation Abstracts International ▼g 80-01A(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998312 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자