LDR | | 01796nmm uu200409 4500 |
001 | | 000000333392 |
005 | | 20240805172937 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438324831 |
035 | |
▼a (MiAaPQ)AAI10816861 |
035 | |
▼a (MiAaPQ)berkeley:17882 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Chen, Yi-Chang. |
245 | 10 |
▼a On Betti Tables, Monomial Ideals, and Unit Groups. |
260 | |
▼a [S.l.] :
▼b University of California, Berkeley.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 53 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: David Eisenbud. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a This thesis explores two topics in commutative algebra. The first topic is Betti tables, particularly of monomial ideals, and how these relate to Betti tables of arbitrary graded ideals. We systematically study the concept of mono, the largest m |
520 | |
▼a The second topic concerns the group of units of a ring. Motivated by the question of when a surjection of rings induces a surjection on unit groups, we give a general sufficient condition for induced surjectivity to hold, and introduce a new cla |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Mathematics. |
650 | 4 |
▼a Theoretical mathematics. |
690 | |
▼a 0405 |
690 | |
▼a 0642 |
710 | 20 |
▼a University of California, Berkeley.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998298
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |