MARC보기
LDR01735nmm uu200385 4500
001000000333325
00520240805172822
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438324701
035 ▼a (MiAaPQ)AAI10816269
035 ▼a (MiAaPQ)berkeley:17848
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 004
1001 ▼a Jiang, Biye.
24510 ▼a Exploratory Model Analysis for Machine Learning.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 98 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: John Canny.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a Machine learning is growing in importance in many different fields. However, it is still very hard for users to tune hyper-parameters when optimizing their models, or perform a comprehensive and interpretable diagnosis for complex models like de
520 ▼a We demonstrate the usage of our system in several real-world applications. For problems like advertisement optimization or clustering where multiple optimization objectives exist, users can incorporate secondary criteria into the model-generatio
590 ▼a School code: 0028.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a University of California, Berkeley. ▼b Computer Science.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998235 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자