MARC보기
LDR01867nmm uu200445 4500
001000000333307
00520240805172802
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438324633
035 ▼a (MiAaPQ)AAI10816068
035 ▼a (MiAaPQ)berkeley:17836
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 001.5
1001 ▼a Boyd, Nicholas.
24510 ▼a Sets as Measures: Optimization and Machine Learning.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 98 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Advisers: Michael Jordan
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a The purpose of this thesis is to address the following simple question:
520 ▼a How do we design efficient algorithms to solve optimization or machine learning problems where the decision variable (or target label) is a set of unknown cardinality?.
520 ▼a In this thesis we show that, in some cases, optimization and machine learning algorithms designed to work with single vectors can be directly applied to problems involving sets. We do this by invoking a classical trick: we lift sets to elements
590 ▼a School code: 0028.
650 4 ▼a Artificial intelligence.
650 4 ▼a Statistics.
650 4 ▼a Applied mathematics.
690 ▼a 0800
690 ▼a 0463
690 ▼a 0364
71020 ▼a University of California, Berkeley. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998218 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자