LDR | | 02012nmm uu200397 4500 |
001 | | 000000333301 |
005 | | 20240805172755 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438324602 |
035 | |
▼a (MiAaPQ)AAI10815970 |
035 | |
▼a (MiAaPQ)berkeley:17830 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Agrawal, Shishir. |
245 | 10 |
▼a Deformations of Overconvergent Isocrystals on the Projective Line. |
260 | |
▼a [S.l.] :
▼b University of California, Berkeley.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 99 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: David Nadler. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a Let k be an algebraically closed field and Z an effective Cartier divisor in the projective over k with complement U. When k = C, a local system on the analytification of U is said to be physically rigid when it is determined by the conjugacy cl |
520 | |
▼a In this dissertation, we consider the situation where char(k ) > 0 and local systems are replaced with overconvergent isocrystals on U. The "moduli of overconvergent isocrystals" is an elusive object, but we establish some results about the form |
520 | |
▼a En route, we establish a general result which shows that a Hochschild cochain complex governs deformations of a module over an arbitrary associate algebra. We also relate this Hochschild cochain complex to a de Rham complex in order to understan |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of California, Berkeley.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998211
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자 |