MARC보기
LDR02012nmm uu200397 4500
001000000333301
00520240805172755
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438324602
035 ▼a (MiAaPQ)AAI10815970
035 ▼a (MiAaPQ)berkeley:17830
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Agrawal, Shishir.
24510 ▼a Deformations of Overconvergent Isocrystals on the Projective Line.
260 ▼a [S.l.] : ▼b University of California, Berkeley., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 99 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: David Nadler.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a Let k be an algebraically closed field and Z an effective Cartier divisor in the projective over k with complement U. When k = C, a local system on the analytification of U is said to be physically rigid when it is determined by the conjugacy cl
520 ▼a In this dissertation, we consider the situation where char(k ) > 0 and local systems are replaced with overconvergent isocrystals on U. The "moduli of overconvergent isocrystals" is an elusive object, but we establish some results about the form
520 ▼a En route, we establish a general result which shows that a Hochschild cochain complex governs deformations of a module over an arbitrary associate algebra. We also relate this Hochschild cochain complex to a de Rham complex in order to understan
590 ▼a School code: 0028.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Berkeley. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998211 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자