MARC보기
LDR01511nmm uu200397 4500
001000000333298
00520240805172751
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438047990
035 ▼a (MiAaPQ)AAI10815951
035 ▼a (MiAaPQ)princeton:12532
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Zhu, Ziwei.
24510 ▼a Distributed and Robust Statistical Learning.
260 ▼a [S.l.] : ▼b Princeton University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 268 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Jianqing Fan.
5021 ▼a Thesis (Ph.D.)--Princeton University, 2018.
520 ▼a Decentralized and corrupted data are nowadays ubiquitous, which impose fundamental challenges for modern statistical analysis. Illustrative examples are massive and decentralized data produced by distributed data collection systems of giant IT c
590 ▼a School code: 0181.
650 4 ▼a Statistics.
650 4 ▼a Operations research.
690 ▼a 0463
690 ▼a 0796
71020 ▼a Princeton University. ▼b Operations Research and Financial Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0181
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998209 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자