MARC보기
LDR02102nmm uu200445 4500
001000000333183
00520240805172343
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438047709
035 ▼a (MiAaPQ)AAI10813738
035 ▼a (MiAaPQ)princeton:12511
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Lu, Junwei.
24510 ▼a Combinatorial Inference for Large-Scale Data Analysis.
260 ▼a [S.l.] : ▼b Princeton University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 237 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Advisers: Han Liu
5021 ▼a Thesis (Ph.D.)--Princeton University, 2018.
520 ▼a Problems of inferring the combinatorial structures of networks arise in many real applications ranging from genomic regulatory networks, brain networks to social networks. This poses new and challenging problems on the uncertainty assessment and
520 ▼a In the first part of the thesis, we propose a unified inferential method to test hypotheses on the global combinatorial properties of graphical models. We showed that my method works for general monotone graph properties that can be preserved un
520 ▼a In the second part of the thesis, we generalize the combinatorial inference for larger family of graphical models. We propose a novel class of dynamic nonparanormal graphical models, which allows us to model high dimensional heavy-tailed systems
590 ▼a School code: 0181.
650 4 ▼a Statistics.
650 4 ▼a Operations research.
650 4 ▼a Artificial intelligence.
690 ▼a 0463
690 ▼a 0796
690 ▼a 0800
71020 ▼a Princeton University. ▼b Operations Research and Financial Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0181
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998086 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자