| LDR | | 00000nmm u2200205 4500 |
| 001 | | 000000333165 |
| 005 | | 20250108151608 |
| 008 | | 181129s2018 ||| | | | eng d |
| 020 | |
▼a 9780438116283 |
| 035 | |
▼a (MiAaPQ)AAI10813505 |
| 035 | |
▼a (MiAaPQ)northwestern:14105 |
| 040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
| 049 | 1 |
▼f DP |
| 082 | 0 |
▼a 510 |
| 100 | 1 |
▼a Elmanto, Elden. |
| 245 | 10 |
▼a Motivic Contractibility of the Space of Rational Maps. |
| 260 | |
▼a [S.l.] :
▼b Northwestern University.,
▼c 2018 |
| 260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
| 300 | |
▼a 112 p. |
| 500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
| 500 | |
▼a Adviser: John NK Francis. |
| 502 | 1 |
▼a Thesis (Ph.D.)--Northwestern University, 2018. |
| 520 | |
▼a The moduli stack of G-bundles on a smooth complete curve C over a field, BunG(C), is an immensely rich geometric object and is of central importance to the Geometric Langlands program. This thesis represents a contribution towards a motivic, in |
| 520 | |
▼a Following the strategy of Gaitsgory and Gaitsgory-Lurie we view the Beilinson-Drinfeld Grassmanian, GrG(C) as a more tractable, homological approximation to BunG( C). In the main theorem of this thesis we prove, using two different approaches, t |
| 590 | |
▼a School code: 0163. |
| 650 | 4 |
▼a Mathematics. |
| 690 | |
▼a 0405 |
| 710 | 20 |
▼a Northwestern University.
▼b Mathematics. |
| 773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
| 773 | |
▼t Dissertation Abstract International |
| 790 | |
▼a 0163 |
| 791 | |
▼a Ph.D. |
| 792 | |
▼a 2018 |
| 793 | |
▼a English |
| 856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998069
▼n KERIS |
| 980 | |
▼a 201812
▼f 2019 |
| 990 | |
▼a 관리자
▼b 관리자 |