MARC보기
LDR00000nmm u2200205 4500
001000000333119
00520250107132402
008181129s2018 ||| | | | eng d
020 ▼a 9780438047556
035 ▼a (MiAaPQ)AAI10812339
035 ▼a (MiAaPQ)princeton:12501
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Ustinovskiy, Yury.
24510 ▼a Hermitian Curvature Flow and Curvature Positivity Conditions.
260 ▼a [S.l.] : ▼b Princeton University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 112 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Gang Tian.
5021 ▼a Thesis (Ph.D.)--Princeton University, 2018.
520 ▼a In the present thesis, we study metric flows on, not necessarily Kahler, complex Hermitian manifolds. Using the framework of the Hermitian curvature flows, due to Streets and Tian, we find a distinguished metric flow (further referred to as the
590 ▼a School code: 0181.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a Princeton University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0181
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998021 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자