MARC보기
LDR01980nmm uu200397 4500
001000000333042
00520240805172059
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438017870
035 ▼a (MiAaPQ)AAI10791350
035 ▼a (MiAaPQ)purdue:22494
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Kepley, Paul A.
24510 ▼a Techniques for Reconstructing a Riemannian Metric via the Boundary Control Method.
260 ▼a [S.l.] : ▼b Purdue University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 124 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Maarten V. de Hoop.
5021 ▼a Thesis (Ph.D.)--Purdue University, 2018.
520 ▼a In this dissertation, we consider some new techniques related to the solution of the inverse boundary value problem for the wave equation with partial boundary data. Most results are formulated in a geometric setting, where waves propagate in th
520 ▼a We consider three problems. In the first problem, we provide a technique to use the N-to-D map to construct the travel times between interior points with known semi-geodesic coordinates and boundary points belonging to Gamma. Such travel times c
520 ▼a In addition to providing constructive procedures, we analyze the stability of some steps from these procedures. In particular we consider the stability of the redatuming procedure and the stability of the metric reconstruction procedure from int
590 ▼a School code: 0183.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a Purdue University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0183
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997639 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자