MARC보기
LDR00000nmm u2200205 4500
001000000332975
00520241209170044
008181129s2018 ||| | | | eng d
020 ▼a 9780355966053
035 ▼a (MiAaPQ)AAI10792380
035 ▼a (MiAaPQ)colorado:15424
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 519
1001 ▼a Fairbanks, H. R.
24510 ▼a Low-Rank, Multi-Fidelity Methods for Uncertainty Quantification of High-Dimensional Systems.
260 ▼a [S.l.] : ▼b University of Colorado at Boulder., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 194 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Advisers: Alireza Doostan
5021 ▼a Thesis (Ph.D.)--University of Colorado at Boulder, 2018.
520 ▼a Characterizing and incorporating uncertainties when simulating physical phenomena is essential for improving model-based predictions. These uncertainties may stem from a lack of knowledge regarding the underlying physical processes or from impre
520 ▼a For systems exhibiting high-dimensional uncertainty, performing either forward or inverse UQ presents a significant computational challenge, as these methods require a large number forward solves of the high-fidelity model, that is, the model th
520 ▼a To reduce the cost of performing UQ on high-dimensional systems, we apply multi-fidelity strategies to both the forward problem, in order to estimate moments of the quantity of interest, and inverse problem, to approximate the posterior covarian
590 ▼a School code: 0051.
650 4 ▼a Applied mathematics.
690 ▼a 0364
71020 ▼a University of Colorado at Boulder. ▼b Applied Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0051
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997705 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자