MARC보기
LDR00000nmm u2200205 4500
001000000332865
00520241205142729
008181129s2018 ||| | | | eng d
020 ▼a 9780438087880
035 ▼a (MiAaPQ)AAI10808825
035 ▼a (MiAaPQ)uchicago:14328
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Rubin, Jonathan.
24510 ▼a Equivariant Categorical Coherence Theory.
260 ▼a [S.l.] : ▼b The University of Chicago., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 136 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Jon P. May.
5021 ▼a Thesis (Ph.D.)--The University of Chicago, 2018.
520 ▼a Let G be a finite, discrete group. This thesis studies equivariant symmetric monoidal G-categories and the operads that parametrize them. We devise explicit tools for working with these objects, and then we use them to tackle two conjectures of
520 ▼a The first half of this thesis introduces normed symmetric monoidal categories, and develops their basic theory. These are direct generalizations of the classical structures, and they are presented by generators and isomorphism relations. We expl
520 ▼a The second half of this thesis studies a number of examples. We explain how to construct normed symmetric monoidal structures by twisting a given operation over a diagram, and we examine a shared link between the symmetric monoidal G-categories
590 ▼a School code: 0330.
650 4 ▼a Theoretical mathematics.
650 4 ▼a Mathematics.
690 ▼a 0642
690 ▼a 0405
71020 ▼a The University of Chicago. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0330
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997840 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자