MARC보기
LDR00000nmm u2200205 4500
001000000332845
00520241205141508
008181129s2018 ||| | | | eng d
020 ▼a 9780438018587
035 ▼a (MiAaPQ)AAI10808507
035 ▼a (MiAaPQ)purdue:22705
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 621.3
1001 ▼a Zhang, Jiawei.
24510 ▼a Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
260 ▼a [S.l.] : ▼b Purdue University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 123 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: David S. Ebert.
5021 ▼a Thesis (Ph.D.)--Purdue University, 2018.
520 ▼a Spatial datasets (i.e., location-based social media, crime incident reports, and demographic data) often exhibit varied distribution patterns at multiple spatial scales. Examining these patterns across different scales enhances the understanding
590 ▼a School code: 0183.
650 4 ▼a Computer engineering.
650 4 ▼a Computer science.
690 ▼a 0464
690 ▼a 0984
71020 ▼a Purdue University. ▼b Electrical and Computer Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0183
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997820 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자