MARC보기
LDR00000nmm u2200205 4500
001000000332550
00520241203173957
008181129s2018 ||| | | | eng d
020 ▼a 9780438036468
035 ▼a (MiAaPQ)AAI10788551
035 ▼a (MiAaPQ)upenngdas:13168
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Brooks, Thomas Gunnison.
24510 ▼a Riemannian Geometry of the Curvature Tensor.
260 ▼a [S.l.] : ▼b University of Pennsylvania., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 81 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Wolfgang Ziller.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2018.
520 ▼a The curvature tensor is the most important isometry invariant of a Riemannian metric. We study several related conditions on the curvature tensor to obtain topological and geo- metrical restrictions. The first condition is the that the kernel of
590 ▼a School code: 0175.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of Pennsylvania. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997458 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자