MARC보기
LDR01496nmm uu200397 4500
001000000332430
00520240805170757
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438036345
035 ▼a (MiAaPQ)AAI10786136
035 ▼a (MiAaPQ)upenngdas:13159
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Olson, Matthew.
24510 ▼a Essays on Random Forest Ensembles.
260 ▼a [S.l.] : ▼b University of Pennsylvania., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 156 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Abraham J. Wyner.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2018.
520 ▼a A random forest is a popular machine learning ensemble method that has proven successful in solving a wide range of classification problems. While other successful classifiers, such as boosting algorithms or neural networks, admit natural interp
590 ▼a School code: 0175.
650 4 ▼a Statistics.
650 4 ▼a Artificial intelligence.
690 ▼a 0463
690 ▼a 0800
71020 ▼a University of Pennsylvania. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997338 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자