MARC보기
LDR00000nmm u2200205 4500
001000000331882
00520241120155430
008181129s2018 ||| | | | eng d
020 ▼a 9780438019874
035 ▼a (MiAaPQ)AAI10826842
035 ▼a (MiAaPQ)ucla:16877
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Menke, Michael.
24510 ▼a Some Results on Fillings in Contact Geometry.
260 ▼a [S.l.] : ▼b University of California, Los Angeles., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 50 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Ko Honda.
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a In this thesis we prove some classification results for symplectic and exact Lagrangian fillings in contact geometry. First we prove a classification result for symplectic fillings of certain contact manifolds. Let ( M,xi) be a contact 3-manifol
590 ▼a School code: 0031.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Los Angeles. ▼b Mathematics 0540.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998944 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자