LDR | | 00000nmm u2200205 4500 |
001 | | 000000331831 |
005 | | 20241120152323 |
008 | | 181129s2018 ||| | | | eng d |
020 | |
▼a 9780438019935 |
035 | |
▼a (MiAaPQ)AAI10827158 |
035 | |
▼a (MiAaPQ)wisc:15371 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 248032 |
049 | 1 |
▼f DP |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Hast, Daniel Rayor. |
245 | 10 |
▼a Rational Points and Unipotent Fundamental Groups. |
260 | |
▼a [S.l.] :
▼b The University of Wisconsin - Madison.,
▼c 2018 |
260 | 1 |
▼a Ann Arbor :
▼b ProQuest Dissertations & Theses,
▼c 2018 |
300 | |
▼a 76 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Adviser: Jordan S. Ellenberg. |
502 | 1 |
▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2018. |
520 | |
▼a We investigate rational points on higher genus curves over number fields using Kim's non-abelian Chabauty method. We provide an exposition of this method, including a brief survey of the literature in the area. In joint work with Ellenberg, we t |
520 | |
▼a We also present a strategy for generalizing the non-abelian Chabauty method to real number fields: A conjecture on certain transcendence properties of the unipotent Albanese map is formulated in the final two chapters of this thesis, together wi |
590 | |
▼a School code: 0262. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a The University of Wisconsin - Madison.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0262 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998989
▼n KERIS |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a 관리자
▼b 관리자 |