MARC보기
LDR00000nmm u2200205 4500
001000000331831
00520241120152323
008181129s2018 ||| | | | eng d
020 ▼a 9780438019935
035 ▼a (MiAaPQ)AAI10827158
035 ▼a (MiAaPQ)wisc:15371
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Hast, Daniel Rayor.
24510 ▼a Rational Points and Unipotent Fundamental Groups.
260 ▼a [S.l.] : ▼b The University of Wisconsin - Madison., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 76 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Jordan S. Ellenberg.
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2018.
520 ▼a We investigate rational points on higher genus curves over number fields using Kim's non-abelian Chabauty method. We provide an exposition of this method, including a brief survey of the literature in the area. In joint work with Ellenberg, we t
520 ▼a We also present a strategy for generalizing the non-abelian Chabauty method to real number fields: A conjecture on certain transcendence properties of the unipotent Albanese map is formulated in the final two chapters of this thesis, together wi
590 ▼a School code: 0262.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a The University of Wisconsin - Madison. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998989 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자