MARC보기
LDR01806nmm uu200433 4500
001000000331789
00520240805165353
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438350939
035 ▼a (MiAaPQ)AAI10825874
035 ▼a (MiAaPQ)umn:19271
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Wu, Chong.
24510 ▼a Statistical Methods for High-dimensional Genetic and Genomic Data.
260 ▼a [S.l.] : ▼b University of Minnesota., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 123 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Advisers: Weihua Guan
5021 ▼a Thesis (Ph.D.)--University of Minnesota, 2018.
520 ▼a Modern genetics research constantly creates new types of high-dimensional genetic and genomic data and imposes new challenges in analyzing these data. This thesis deals with several important problems in analyzing high-dimensional genetic and ge
520 ▼a First, we introduce a site selection and multiple imputation method to impute missing data in covariates in epigenome-wide analysis of DNA methylation data, which can help us adjust potential confounders, such as cell type composition. Second, t
590 ▼a School code: 0130.
650 4 ▼a Statistics.
650 4 ▼a Genetics.
650 4 ▼a Bioinformatics.
690 ▼a 0463
690 ▼a 0369
690 ▼a 0715
71020 ▼a University of Minnesota. ▼b Biostatistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0130
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998813 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자