| LDR |  | 00000nmm u2200205   4500 | 
| 001 |  | 000000331789 | 
| 005 |  | 20241120142556 | 
| 008 |  | 181129s2018    |||    |   | |      eng d | 
| 020 |  | ▼a 9780438350939 | 
| 035 |  | ▼a (MiAaPQ)AAI10825874 | 
| 035 |  | ▼a (MiAaPQ)umn:19271 | 
| 040 |  | ▼a MiAaPQ
    ▼c MiAaPQ
    ▼d 248032 | 
| 049 | 1 | ▼f DP | 
| 082 | 0 | ▼a 310 | 
| 100 | 1 | ▼a Wu, Chong. | 
| 245 | 10 | ▼a Statistical Methods for High-dimensional Genetic and Genomic Data. | 
| 260 |  | ▼a [S.l.] :
    ▼b University of Minnesota.,
    ▼c 2018 | 
| 260 | 1 | ▼a Ann Arbor :
    ▼b ProQuest Dissertations & Theses,
    ▼c 2018 | 
| 300 |  | ▼a 123 p. | 
| 500 |  | ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. | 
| 500 |  | ▼a Advisers: Weihua Guan | 
| 502 | 1 | ▼a Thesis (Ph.D.)--University of Minnesota, 2018. | 
| 520 |  | ▼a Modern genetics research constantly creates new types of high-dimensional genetic and genomic data and imposes new challenges in analyzing these data. This thesis deals with several important problems in analyzing high-dimensional genetic and ge | 
| 520 |  | ▼a First, we introduce a site selection and multiple imputation method to impute missing data in covariates in epigenome-wide analysis of DNA methylation data, which can help us adjust potential confounders, such as cell type composition. Second, t | 
| 590 |  | ▼a School code: 0130. | 
| 650 | 4 | ▼a Statistics. | 
| 650 | 4 | ▼a Genetics. | 
| 650 | 4 | ▼a Bioinformatics. | 
| 690 |  | ▼a 0463 | 
| 690 |  | ▼a 0369 | 
| 690 |  | ▼a 0715 | 
| 710 | 20 | ▼a University of Minnesota.
    ▼b Biostatistics. | 
| 773 | 0 | ▼t Dissertation Abstracts International
    ▼g 80-01B(E). | 
| 773 |  | ▼t Dissertation Abstract International | 
| 790 |  | ▼a 0130 | 
| 791 |  | ▼a Ph.D. | 
| 792 |  | ▼a 2018 | 
| 793 |  | ▼a English | 
| 856 | 40 | ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998813
    ▼n KERIS | 
| 980 |  | ▼a 201812
    ▼f 2019 | 
| 990 |  | ▼a 관리자
    ▼b 관리자 |