MARC보기
LDR01757nmm uu200385 4500
001000000331697
00520240805164919
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438414563
035 ▼a (MiAaPQ)AAI10932892
035 ▼a (MiAaPQ)ucla:17195
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 510
1001 ▼a Boyd, Zachary Mark.
24510 ▼a Community Detection Using Total Variation and Surface Tension.
260 ▼a [S.l.] : ▼b University of California, Los Angeles., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 104 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
500 ▼a Adviser: Andrea Bertozzi.
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a In recent years, a massive expansion in the amount of available network data in fields such as social networks, food networks in ecology, similarity networks in machine learning, transportation networks, brain networks, and many others has motiv
520 ▼a Two of the most well-known frameworks for community detection are modularity optimization and stochastic block modeling. They can often uncover meaningful community structure in networks from diverse applications. However, both of these approach
590 ▼a School code: 0031.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Los Angeles. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 80-02B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15001119 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자