MARC보기
LDR00000nmm u2200205 4500
001000000331491
00520241119092054
008181129s2018 ||| | | | eng d
020 ▼a 9780438344778
035 ▼a (MiAaPQ)AAI10928638
035 ▼a (MiAaPQ)cornellgrad:11076
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 310
1001 ▼a Yu, Guo.
24510 ▼a High-Dimensional Structured Regression Using Convex Optimization.
260 ▼a [S.l.] : ▼b Cornell University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 193 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: Jacob Bien.
5021 ▼a Thesis (Ph.D.)--Cornell University, 2018.
520 ▼a While the term "Big Data" can have multiple meanings, we consider the type of data in which the number of features can be much greater than the number of observations (also known as high-dimensional data). High-dimensional data is abundant in co
590 ▼a School code: 0058.
650 4 ▼a Statistics.
690 ▼a 0463
71020 ▼a Cornell University. ▼b Statistics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0058
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000909 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자