MARC보기
LDR00000nmm u2200205 4500
001000000331341
00520241115153109
008181129s2018 ||| | | | eng d
020 ▼a 9780438136267
035 ▼a (MiAaPQ)AAI10903801
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 510
1001 ▼a Zydney, Adam J.
24510 ▼a Boundary Maps and Their Natural Extensions Associated with Fuchsian and Kleinian Groups.
260 ▼a [S.l.] : ▼b The Pennsylvania State University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 78 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
5021 ▼a Thesis (Ph.D.)--The Pennsylvania State University, 2018.
520 ▼a Geodesic flows on surfaces of constant negative curvature are a rich source of examples in ergodic theory, and geodesic flow on the modular surface in particular has deep connections to real continued fractions from number theory. This thesis de
520 ▼a The Fuchsian results (Chapter III) are joint with Svetlana Katok and build on results of Katok and Ugarcovici, who studied a family of maps generalizing the Bowen-Series boundary map. When the parameters satisfy the short cycle property, i.e., t
520 ▼a In Chapter IV, we consider three-dimensional real hyperbolic space, in which the boundary is the Reimann sphere C &cup
590 ▼a School code: 0176.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a The Pennsylvania State University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0176
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000756 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자