MARC보기
LDR01957nmm uu200373 4500
001000000331338
00520240805164203
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438136182
035 ▼a (MiAaPQ)AAI10903793
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0820 ▼a 551
1001 ▼a Ying, Yue.
24510 ▼a Ensemble Data Assimilation for the Analysis and Prediction of Multiscale Tropical Weather Systems.
260 ▼a [S.l.] : ▼b The Pennsylvania State University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 195 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
5021 ▼a Thesis (Ph.D.)--The Pennsylvania State University, 2018.
520 ▼a Tropical weather systems are important components of the global circulation that span a wide range of spatial and temporal scales. On the large-scale end of the spectrum, the Madden-Julian Oscillation (MJO) is found to be the dominant mode. Atmo
520 ▼a Using a convection-permitting numerical model, Weather Research and Forecasting (WRF), an MJO active phase during October 2011 is simulated. The practical predictability limit is estimated from an ensemble forecast with realistic initial and bou
520 ▼a For ensemble filtering, covariance localization and inflation methods are required to account for sampling errors due to limited ensemble size and unrepresented model errors. Tuning the localization and inflation to achieve optimal filter perfor
590 ▼a School code: 0176.
650 4 ▼a Meteorology.
690 ▼a 0557
71020 ▼a The Pennsylvania State University. ▼b Meteorology.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0176
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000750 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자