MARC보기
LDR00000nmm u2200205 4500
001000000331083
00520241108141602
008181129s2018 ||| | | | eng d
020 ▼a 9780438261792
035 ▼a (MiAaPQ)AAI10837508
035 ▼a (MiAaPQ)cumc.columbia:10044
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 248032
0491 ▼f DP
0820 ▼a 574
1001 ▼a Drill, Esther.
24510 ▼a Statistical Methods for Integrated Cancer Genomic Data Using a Joint Latent Variable Model.
260 ▼a [S.l.] : ▼b Columbia University., ▼c 2018
260 1 ▼a Ann Arbor : ▼b ProQuest Dissertations & Theses, ▼c 2018
300 ▼a 116 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Advisers: Yuanjia Wang
5021 ▼a Thesis (Dr.P.H.)--Columbia University, 2018.
520 ▼a Inspired by the TCGA (The Cancer Genome Atlas), we explore multimodal genomic datasets with integrative methods using a joint latent variable approach. We use iCluster+, an existing clustering method for integrative data, to identify potential s
590 ▼a School code: 0054.
650 4 ▼a Biostatistics.
650 4 ▼a Statistics.
690 ▼a 0308
690 ▼a 0463
71020 ▼a Columbia University. ▼b Biostatistics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0054
791 ▼a Dr.P.H.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999563 ▼n KERIS
980 ▼a 201812 ▼f 2019
990 ▼a 관리자 ▼b 관리자